TRANSPORTATION RESEARCH COMMITTEE

TRC9305

A Study of the Properties of Fiber Composite Bars for Use in Highway Bridge Deck Reinforcement

T. E. Cousins, L. G. Pleimann, J. J. Schemmel, Mr. Faruqi, D. Mbekelu, J. Williams

Final Report

Final Report

TRC-9305

A STUDY OF THE PROPERTIES OF FIBER COMPOSITE BARS FOR USE IN HIGHWAY BRIDGE DECK REINFORCEMENT

Principal Investigators T.E. Cousins, L.G. Pleimann, J.J. Schemmel (prepared by L.G. Pleimann

Graduate Assistants Mr. Faruqi, D. Mbekelu, J. Williams

Conducted by

Department of Civil Engineering University of Arkansas Fayetteville, Arkansas

and

Department of Civil Engineering Auburn University Auburn University, Alabama

In Cooperation With

Arkansas State Highway and Transportation Department

and

U.S. Department of Transportation Federal Highway Administration

Report No. FHWA/AR-94-03

University of Arkansas Fayetteville, Arkansas 72201

June 1997

FINAL REPORT

TRC-9305

A STUDY OF THE PROPERTIES OF FIBER COMPOSITE BARS FOR USE IN HIGHWAY BRIDGE DECK REINFORCEMENT

Principal Investigators

T.E. Cousins, L.G. Pleimann, J.J. Schemmel (prepared by L.G. Pleimann)

Graduate Assistants

M. Faruqi, D. Mbekelu, J. Williams

Conducted by

Department of Civil Engineering University of Arkansas Fayetteville, Arkansas

and

Department of Civil Engineering Auburn University Auburn University, Alabama

in cooperation with

Arkansas State Highway and Transportation Department

and

U.S. Department of Transportation Federal Highway Administration

Report No. FHWA/AR-94-03

University of Arkansas Fayetteville, Arkansas 72701

June, 1997

FINAL PROJECT SUMMARY REPORT

A study and evaluation of the basic properties of fiber reinforced polymer (FRP) rods for use as bridge deck reinforcement was completed in April, 1996. Two reinforcing fibers were studied, E-glass and carbon. The glass fiber (GFRP) bars tested were straight production line bars, using vinylester resin as the polymer matrix, manufactured by PolyStructures, Inc. of Little Rock, Arkansas. The data for GFRP bars using a polyester resin matrix were available for comparison from other tests done for the manufacturer under a separate contract. The carbon fiber (CFRP) bars were hand laid-up by Marshall-Vega Corporation of Marshall, Arkansas, using an epoxy matrix.

The study was conducted in two parts, tension tests and bond pull-out tests. The tension tests were done at the University of Arkansas. These tests were controlled at a constant stroke rate of 0.07 inches (0.178 cm)/minute in a 110 kip (439 kN) MTS test frame to failure. A secant modulus of elasticity between the points of 5% and 50% of ultimate strength was calculated for each bar. Also, fatigue tests were done by subjecting bars to repeated loads at one Hz at various percentages of the bar failure strength ranging between 10% and 50% for the GFRP bars and between 50% and 90% for the CFRP bars. These latter tests indicated a definite need for a reduction in applied stress to be able to achieve a larger number of repeated loadings.

The GFRP bars were consistent in their strength, averaging 70 ksi (483 MPa) ultimate stress for the #4 and #5 bars, and 95 ksi (655 MPa) for the #6 bars. The #4, #5, and #6 bars (#'s 13, 16, 19 bar sizes by new metric designation) showed average moduli of elasticity of 4.9, 5.3, and 6.0 million psi (33.8, 36.5, and 41.4 GPa)respectively. The results for the CFRP bars were more scattered because of the hand manufacturing process. The carbon bars showed an average ultimate tensile strength of 122.5, 125.7, and 107.2 ksi (844.6, 866.7, and 739.1 MPa)

ii

for the #4, #5, and #6 bars respectively. The #4, #5, and #6 bars showed average modulii of elasticity of 11.3, 12.2, and 10.9 million psi (77.9, 84.1, and 75.2 GPa) respectively.

The second part of the study was completed at Auburn University. Bond pull-out tests were made of each size of GFRP bar to determine the bond strength coefficient. The coefficient, k, varied with size of bar, having an average value of 19.88, 26.79, and 32.75 for glass reinforced #4, #5, and #6 bars respectively. This indicates the need for development lengths some 75%, 31%, and 7% greater than the current ACI Code formulation for individual steel rebars of the same respective "size." This tendency of increased bond capacity with increasing bar size is consistent with earlier tests done at the University of Arkansas on GFRP bars from a different manufacturer.

Because of the distortion and inconsistency of the outer shape of the carbon reinforced FRP bars there was excessive scatter in the bond results. It was decided to not continue with the bond strength tests of CFRP bars. However, it was felt that good bond strength consistent with that of GFRP bars will be available in the future from CFRP bars when they are machine made.

iii

TABLE OF CONTENTS

Ċ Ċ

Item	page
FINAL PF	OJECT SUMMARY REPORT
LIST OF	FIGURES
LIST OF	TABLES
ACKNOW	LEDGEMENTS
1. BA	CKGROUND
1.1 1.2 1.3	Introduction
2. TH	ESTING PROGRAM
2.	1 Tension Testing 6 2.1.1 Direct Tension Tests 7 2.1.2 Fatigue Tests 7 8 8
2.	2 Testing for Bond Strength
3. TI	EST RESULTS
3.	1 Tension Testing
4. C	ONCLUSIONS AND RECOMMENDATIONS
4 4 4	1Interpretation of Test Results364.1.1Tension Strength and Modulus of Elasticity Tests364.1.2Bond Pull-Out Tests384.1.3Fatigue Strength Tests394.1.4General Conclusions41.2Recommendations for Applications44.3Recommendations for Further Research45
LIST OI	REFERENCES

LIST OF FIGURES

. .

Figure	Page
1	Effect of Loading Rate on Tensile Failure Load
2	Comparison of Relative Strength and Stiffness of Carbon and Glass Fiber Rebars 23
3	Stress Level Versus Number of Cycles to Failure
4	Percent of Ultimate Load Vs. Number of Cycles to Failure
5	Other GFRP Fatigue Data Compared With Steel (from Chaalial and Benmokrane) 41

LIST OF TABLES .

.

	Page
Table	12
1	Tension Test Results for GFRP Vinylester Matrix Bars
1m	Tension Test Results for GFRP Vinylester Matrix Bars (metric)
2A	Results of Tests of Separate Batch #1 of #6 Vinylester Matrix GFRP Bars 14
2B	Results of Tests of Separate Batch #2 of #6 Vinylester Matrix GFRP Bars 14
2Am	Results of Tests of Separate Batch #1 of #6 Vinylester Matrix GFRP Bars (metric) . 15
2Bm	Results of Tests of Separate Batch #2 of #6 Vinylester Matrix GFRP Bars (metric) . 15
3	Tension Test Results of Polyester Matrix GFRP Bars
3m	Tension Test Results of Polyester Matrix GFRP Bars (metric)
4	Results of Tests of #4 Polyester Matrix GFRP Bars Under Varying Loading Rates 18
4m	Results of Tests of #4 Polyester Matrix GFRP Bars Under Varying Loading Rates (metric)
5	Tension Test Results for Carbon Fiber Epoxy Matrix Bars
5m	Tension Test Results for Carbon Fiber Epoxy Matrix Bars (metric)
6	Results of Fatigue Loading of Glass Fiber Rebars @ 1Hz
6m	Results of Fatigue Loading of Glass Fiber Rebars @ 1Hz (metric)
7	Results of Fatigue Loading of Carbon Fiber Rebars @ 1Hz
7m	Results of Fatigue Loading of Carbon Fiber Rebars @ 1Hz (metric)
8A	Bond Strength Results in 3050 psi Concrete of GFRP Rebars
8A	m Bond Strength Results in 21.029 MPa Concrete of GFRP Rebars (metric) 33
8R	Bond Strength Results in 2500 psi Concrete of GFRP Rebars
2D 2D	Bond Strength Results in 17.237 MPa Concrete of GFRP Rebars (metric)
OD	

ACKNOWLEDGEMENTS

The research documented in this report has been funded by the U.S. Department of Transportation's Federal Highway Administration and the Arkansas Highway and Transportation Department.

The technical research team included Dr. Thomas E. Cousins of Auburn University, and Drs. John J. Schemmel, and Larry G. Pleimann of the University of Arkansas. All served as coprincipal investigators. Liason with PolyStructures, Inc., a subsidiary of ETC Engineers, Inc. of Little Rock was Mr. Will Andrews. Mr. David Ratchford, President of Marshall-Vega Corporation of Marshall, Arkansas was of great help in trying times in getting the carbon fiber based rods ready.

Mrs. Jennifer Williams served as the principal graduate assistant on the project. Messrs. Davis Mbekelu and Mohammad Faruqi worked also on the project at various times. They were ably assisted by Mr. Mark Kuss and Miss Becky Collier in the operation of the MTS equipment.

The machine shop personnel of the Engineering Research Center were invaluable in making the specimen forms and the holding devices necessary for conducting the tension tests. Thanks go especially to Mr. Don Bell and Mr. Randal Springer for their energy and expertise.

1. BACKGROUND

1.1 Introduction

The increased use of deicer chemicals that began in the sixties has contributed greatly to the deterioration of reinforced concrete bridge decks and pavements in the United States. The infiltration of chloride ions into the concrete causes the pH surrounding the reinforcing steel to become acidic. This change in pH allows the steel to oxidize. The resulting iron oxide crystals expand as much as 16 times the volume of the source steel [Crumpton, 1985]. The internal expansion produces high tensile stresses in the concrete. This leads to cracking near the top surface and spalling of the concrete follows. The direct exposure of the underlying reinforcement to the environment and traffic loads hastens the deterioration of the slab. Unless the damaged area is repaired, a significant loss of strength and/or service life of a pavement or deck will occur.

Most efforts to control the corrosion of deformed deck and pavement reinforcement have been directed toward protection of the steel bars. Additional concrete cover, surface sealants for the concrete, corrosion inhibitors mixed with the concrete, reduced concrete permeability, cathodic protection, epoxy coating, and galvanizing are examples. The use of fusion epoxy coated bars has become standard in the effort to protect concrete reinforcing steel from corrosion. However, epoxy coating is not the final answer since small cracks in the coating may hasten local corrosion [Clear, 1992]. Epoxy coating is also being used with pavement dowel bars. Few other alternatives have been proposed for the protection of steel reinforcement apart from the suggestion of using more expensive stainless steel [Black, <u>et al</u>, 1988], or to search for another more effective coating.

An alternate effort has attempted the development of other forms of reinforcement that are not susceptible to corrosion. Fiber reinforced polymer (FRP) bars provide one such option. This "composite" material consists of thin high-strength synthetic fibers embedded within a hardened polymer matrix. FRP bars have already been used for slabs on grade, as prestressing tendons [Preis and Bell, 1987; Nanni, 1991], in marine environment structures, and in structures wherein non-magnetic properties are important such as magnetic resonance imaging installations [Roll, 1991], and large transformer foundation pads. The bars are not susceptible to corrosion and have high tensile strength.

The early use of composites was driven by a search for improvement in the strengthweight ratio of structural materials used in military aircraft. Much of this literature is However, the application of composite materials to civil proprietary and/or classified. engineering type structures goes back several decades and interest grows daily. Recent contributions to the growth of the basic literature include: 1) the ASCE Specialty Conference on "Advanced Composites in Civil Engineering Structures" held in Las Vegas, January 31 to February 1, 1991, 2) the recent industry-government-university consortium "Composites in Construction Workshop" at West Virginia University, in November, 1991, that tried to set priorities for FRP research and to form an organization for the promotion of composites in construction, 3) the establishment of ACI Committee 440 on "FRP Bar and Tendon Reinforcement," 4) the first international conference on "Advanced Composite Materials in Bridges and Structures," held in Sherbrooke, Quebec, Canada in 1992, 5) the ACI "International Symposium on FRP Reinforcement for Concrete Structures" held in Vancouver, British Columbia, Canada in March, 1993, and 6) the "First International Conference on Composites in Infrastructure," held in Tuscon, Arizona in January of 1996. At this writing the appropriate committee of ASTM is seeking to establish a standard D2018 for the testing of FRP composite

bars. And in the meantime the literature available in the usual channels of communication is also rapidly increasing.

Interest in these types of materials at the University of Arkansas began over a decade ago. Tests previous to this study have examined a limited range of glass and KEVLAR-49 reinforced small-diameter bars in tensile strength, modulus of elasticity, and pull-out bond [Pleimann, 1991]. The results suggested that such materials are strong enough, can be made stiff enough, and have sufficient bond strength to substitute for steel reinforcement. However, many basic questions regarding the properties and behavior of the fiber reinforced bars are still unanswered and must be addressed before their widespread use becomes feasible. Similar results have been evaluated at other schools [Faza & GangaRao, 1990].

The current study is the attempt to establish baseline data regarding the tensile strength, modulus of elasticity, and bond strength in Portland cement concrete of several types of FRP deformed bars manufactured by Arkansas enterprises. The study included work with glass fiber reinforced vinylester matrix rods (GFPR) made by PolyStructures, Inc., a subsidiary of ETC Engineers, Inc. of Little Rock, Arkansas, and carbon fiber reinforced epoxy matrix rods (CFRP) manufactured by Marshall-Vega Corporation of Marshall, Arkansas. In addition to static tests, it was initially intended that the bars be subjected to repeated tensile load ranging between zero and 50 percent of their ultimate tensile strength for 500,000 cycles so as to investigate any reduction in tensile strength from fatigue loss. As will be described later this objective was modified because of results received. This final report describes the testing procedures and results received in this effort.

1.2 Research Objectives

The research objectives of this study consisted of:

- 1. The evaluation of the following static physical properties of standard sizes of deformedsurface fiber reinforced polymer rods using two types of fibers:
 - a. The failure strength, and ultimate tensile stress capacity.
 - b. The average modulus of elasticity.
 - c. The bond strength coefficient of the rods in Portland cement concrete.
- 2. An initial evaluation of the residual tensile strength of these same bars after repeated tensile loading between essentially zero load and 50% of their static tensile strength.

1.3 Scope of the Study

Sixteen glass FRP specimens for strength tests and twelve specimens for bond tests were obtained in each of three bars sizes, #4's, #5's and #6's (#13's, #16's and #19's in "soft metric" designation, hereinafter "m"). These specimens represented normal production examples of FRP rods with a vinylester matrix and E-glass fiber reinforcement in the order of 70% by volume, as manufactured by PolyStructures, Inc. of Little Rock, Arkansas. Strength tests of #6 (#19m) bars made for a PolyStructures client were done to examine consistency of manufacture between lots. Also, similar bars with a polyester matrix were tensile tested for comparison.

A small group of fifteen GFRP polyester matrix specimens were also tensile tested in groups of three at varying rates of loading to determine to what extent that variable would effect the results of static tensile testing. The force/deformation curves for these materials is non-ductile and could be effected by the head-speed of the testing machine.

Sixteen carbon FRP specimens for strength tests were obtained in each of three bars sizes, #4's (#13m's), #5's (#16m's) and #6's (#19m's). An initial shipment of six #5's (#16m's)

was sent to Auburn University for bond tests. These specimens were all "hand-laid-up" CFRP rods with an epoxy matrix made by Marshall-Vega, Inc. of Marshall, Arkansas. The use of an epoxy matrix was a result of the "mind-set" of engineers both at Marshall-Vega and at PolyStructures, Inc., the company that manufactured the GFRP rebars whose testing was reported in the first interim report.

A common use of carbon fibers in the past was in the form of flat sheets for the aircraft industry. The sheets were kept at low temperatures to retard the hardening of the epoxy. Once shipped to the user they were stamped to the desired shape and heated. Most persons familiar with carbon fiber composites were of the opinion that epoxy was the only compatible polymer for carbon fibers. It was later learned that vinylesters do exist compatible with carbon fiber. In the meantime, the existing hand-made specimens were tested. It is hoped that future tests may be made of carbon fiber rebars made by pultrusion using a compatible vinylester.

2. TESTING PROGRAM

2.1 Tension Testing

Static tensile testing of the FRP rebars was done with a 110 kip (489 kN) capacity MTS universal testing machine. The machine is controlled by electronic feedback from measured load, strain, or stroke to a wide range of testing programs. The machine is located in the Civil Engineering laboratories of the Bell Engineering Center at the University of Arkansas.

All tensile specimens were gripped by means of devices mounted in the MTS machine containing a tapered hole varying from 1.25 inches (3.175 cm) diameter to 5.00 inches (12.70 cm) diameter over a longitudinal length of 24 inches (60.96 cm). The holding devices were made of 6061-T6 aluminum in two symmetrical parts. They were connected together with class 8 machine bolts. The design ensured being able to reach a full 110 kips (489 kN) load. Two separate sets of three molds were made of the same material and mounted on two wood and plywood frames.

Tension specimens measuring 5'-1" (1.55 m) were placed in the molds and a corresponding tapered segment of high-strength grout was cast on one end of the specimen with an approximate 0.5 inches (1.27 cm) of rod extending beyond the grouted end. After a minimum of twelve hours curing, the specimen was removed from the form, rotated, the first end was wrapped in plastic film, and the opposite end was cast. This left an exposed 12" (30.5 cm) length of rod between the two ends for the easy attachment of an extensometer with an 8" (20.3 cm) gage length. The most recently cast end was allowed to cure in the molds for at least two days. When the specimen was removed from the form the second end was wrapped in plastic film also until the tensile test was performed. Care was taken to avoid curvature of the

rods during casting, and in transporting the specimens from the casting site to the testing facility.

2.1.1 Direct Tension Tests

After curing, the specimens were mounted in the similarly shaped holding device in the 110 kip (498 kN) capacity MTS universal testing machine. Control of the loading procedure consisted of limiting the actuator movement ("stroke") to a constant rate of 0.07 inches (0.178 cm) per minute. This head speed was randomly chosen. It has since been learned that the proposed ASTM D2018 standard will use a head speed of 0.05 inches (0.127 cm) per minute. Fifteen additional GFRP tests were done in groups of three at five head speeds ranging between 0.05 and 0.5 inches (0.127 and 1.27 cm) per minute. No significant differences were found in the results. Electronic readings in millivolts from the stroke, the extensometer extension, and the load cell were collected on a computer hard disk for later transfer to a spread sheet program for analysis and plotting.

In addition to noting the maximum force obtained from each rod, the load and deformation at 5% and 50% of the maximum force were obtained and a secant modulus of elasticity evaluated from the data.

2.1.2 Fatigue Tests

The original intent of the fatigue testing was described in the final revision of the proposal for this project. It was to subject six bars of each bar size for each of the two fiber materials to a repeated load varying between essentially zero and 50% of the average ultimate strength of the bars that had been evaluated by the previous static tension tests. This loading was to be continued for 500,000 cycles. Then the bar would be failed with a static tension test to evaluate any reduction of capacity due to the previous repeated loading.

The initial intent was to operate the repeated load at either 6 Hz (modeling two axles about 14 ft. (4.27 m) apart traveling at approximately 65 mph (104.6 kph)) or 24 Hz (modeling dual-wheel axles passing at 65 mph (104.6 kph)). However, the capacity of the hydraulic pump, and the large loads involved restricted the frequency to 1 Hz. The fatigue loading of the first #4 (#13 metric) GFRP specimen was begun and it was expected that the test would take approximately 5-3/4 days to complete. However, returning to the lab several hours later the writer found that the specimen had already failed.

The testing procedure was changed. The GFRP bars were fatigue tested to failure under repetitive loads varying from zero to a specific percentage of their ultimate tensile load. The percentage used started at roughly 50% and in subsequent tests varied in negative increments of 10% down to a final load level of 10%. The number of cycles completed before failure were recorded. When the number of cycles that the bar had resisted exceeded 500,000 the testing procedure was stopped and the final count noted.

When fatigue testing of CFRP bars was begun it was assumed that the same revised procedure would be used. The first CFRP tests were begun at 50% of the tensile strength. It was expected that this loading would lead to a quick failure. But it did not. Instead, the initial CFRP test at 50% of the static load capacity of the carbon fiber bar exceeded 500,000 cycles. This was the initial indication of the superior fatigue strength of the carbon fiber bars by comparison to the glass fiber bars. The percentage of ultimate tensile load for the CFRP bars was changed to a 50% to 90% range which proved appropriate to that material.

2.2 Testing for Bond Strength

K

The intent at Auburn University was to test twelve specimens in bond pull-out resistance for each bar size. The twelve would all be tested in four groups of three specimens, each group

at a different embedment length in the concrete. It was also intended to use a concrete strength of 4000 psi (27.58 MPa) for all specimens corresponding to AHTD specified Class S(AE). Difficulties associated with the casting process and other matters resulted in changes from the intended plan. The specimen ends were cast in 8 inch (20.32 cm) square cross-section blocks with varying embedment lengths. The specimens were cast at two different times using two different batches that resulted in average concrete strengths of 3050 psi (21.03 MPa) and 2500 psi (17.24 MPa). These differences were taken into account in evaluating the bond test results. Also, for each of the bar sizes three steel bar specimens were also cast and some tested for comparison.

The bars were pulled until slip was noted at the free end of the embedment. The tension exerted that caused the slip was recorded. The results of these bond tests of the full range of GFRP bars is indicated below.

An initial shipment of six #5 (#16m) carbon FRP bars was sent to Auburn University as the "hand-lay-up" procedure was optimized. Despite the best effort at hand manufacture the outer surface of these bars was so rough and irregular the attempts at bond testing proved highly inconsistent. The hope of getting usable bond test data was abandoned until a method could be found to manufacture the bars by the usual pultrusion process.

3. TEST RESULTS

3.1 Tension Testing

The results of both the static tensile strength and the modulus of elasticity testing for both the glass and carbon FRP bars is given in tabular form below, and the results are combined in graphic presentation. The interpretation and application of the results follow in Section 4.

3.1.1 Static Strength and Modulus of Elasticity Results

Glass Fiber Reinforced Bars

Table 1 gives the results of the six tensile tests done for each of the three GFRP bar sizes. The results include the ultimate force capacity, the ultimate stress capacity, and the modulus of elasticity. The stress value is based on an assumed cross sectional area equivalent to that of a steel bar of the same "size" number. For each bar size, the averages are given for each of the three results, together with the corresponding standard deviation, and the coefficient of variation. The coefficients of variation are small and decrease with increasing bar size. The coefficient of variation for typical Portland cement concrete results would be in the order of 0.15. The manufacture of the bars give quite consistent results.

Tables 2A and 2B show the results from two batches of #6 (#19 metric) GFRP bars made by Poly-Structures and tested by the department for one of their clients. The results are very close to the values received from testing of the GFRP #6's supplied for the project. Table 3 shows results of recent testing done by the department of GFRP bars with a polyester matrix. Vinylester is the more commonly used polymer for GFRP bars, but it is more expensive than polyester. Polyester is preferable only in dry climates. The results for the #'s 5 (#16m) and 6 (#19m) bars are essentially the same as for the same size vinylester matrix bars. However, the #4 (#13m) polyester bars were some 28% stronger than the corresponding vinylester matrix bars.

Table 4 shows the results of tests of fifteen #6 polyester matrix GFRP bars tension tested at different head speeds. Figure 1 is a plot of those results. A general trend of increased strength and stiffness with faster head speed is observed. It should be noted that the specimens using the 0.07 inches (0.178 cm)/minute head speed are from a different batch. In any case, the overall difference caused by varying the head speed seems small. This problem will be eliminated by the standard of 0.05"(0.127 cm)/min. head speed of the proposed ASTM D2018. Carbon Fiber Reinforced Bars

Table 5 gives the results of the five or six successful tensile tests done for each of the three bar sizes. The results include the ultimate force capacity, the ultimate stress capacity, and the modulus of elasticity. The stress value is based on an assumed cross sectional area equivalent to that of a steel bar of the same "size" number. For each bar size, the averages are given for each of the three results, together with the corresponding standard deviation, and the coefficient of variation. The coefficient of variation for typical Portland cement concrete results would be in the order of 0.15. The CFRP bars give results that are, for the most part, commensurate with this standard of consistency despite the imprecise method of manufacture.

Figure 2 summarizes and combines the tension test results for both the GFRP and CFRP rebars. Different symbols are used for different sized bars. The tightly compacted data to the lower left left-hand of the plot are GFRP results. The compactness demonstrates the consistency achieved by the mechanical pultrusion process. The more scattered data to the upper right-hand of the plot are the CFRP results. The scatter shows the inconsistency inherent in the hand manufacturing procedure.

Specimen Number	Rebar Size Number (steel)	Ultimate Force (kips)	Ultimate Stress (ksi)	Modulus of Elasticity (ksi)
G4A	4	3.418	17.090*	4,368.348
G4B	4	13.721	68.605	4,995.753
G4C	4	15.039	75.195	5,643.645
G4I	4	12.256	61.280	4,640.205
G4J	4	14.063	70.315	5,523.652
G4K	4	13.232	66.160	4,130.921
Average	4	13.662	68.311	4,883.754
Std.Dev.			5.137	615.006
Coef./Var.			0.075	0.126
G5A	5	21.973	70.881	5,014.226
G5B	5	18.994	61.271	5,466.098
G5C	5	23.193	74.816	5,076.120
G5D	5	22.705	73.242	5,448.549
G5E	5 .	21.387	68.990	5,530.090
G5F	5	22.998	74.187	5,257.944
Average	5	21.875	70.565	5,298.838
Std.Dev.			5.046	217.323
Coef/Var.			0.072	0.041
G6A	6	42.627	96.879	5,923.138
G6C	6	41.797	94.993	6,020.103
G6D	6	44.043	100.098	6,080.383
G6E	6	43.555	98.989	6,190.997
G6F	6	40.332	91.664	5,933.043
G6G	6	41.797	94.993	5,835.606
Average	6	42.359	96.270	5,997.212
Std.Dev.			3.062	127.055
Coef./Var.			0.032	0.021

 Table 1 Tension Test Results for GFRP Vinylester Matrix Bars

* not used in calculating average

Specimen Number	Metric Rebar Size (steel)	Ultimate Force (kN)	Ultimate Stress (MPa)	Modulus of Elasticity (MPa)
G4A	13	15.204	117.831*	30,118.70
G4B	13	61.034	473.015	34,444.50
G4C	13	66.897	518.451	38,911.56
G4I	13	54.517	422.511	31,993.09
G4J	13	62.555	484.805	38,084.24
G4K	13	58.859	456.157	28,481.70
Average	13	60.772	470.988	33,672.30
Std.Dev.			35.418	4,240.32
Coef./Var.			0.075	0.126
G5A	16	97.741	488.707	34,571.87
G5B	16	84.494	422.449	37,687.42
650	16	103.168	515.838	34,998.61
G5D	16	100.997	504.986	37,566.42
G5E	16	95.134	475.669	38,335.47
G5E	16	102.300	511.501	36,252.25
	16	97.305	486.529	36,534.20
Std Dev.			34.791	1,498.39
Coef/Var.	-		0.072	0.041
G6A	19	189.654	667.957	40,838.60
G6C	19	185.922	654.954	41,507.15
G6D	19	195.913	690.151	41,922.76
	19	193.742	682.505	42,685.42
G6E	19	179.406	632.001	40,906.89
G6G	19	185.922	654.954	40,235.09
Average	19	188.422	663.758	41,349.32
Std Dev			21.112	876.015
Case /Van			0.032	0.021

* not used in calculating average

Specimen Number	Ultimate Force (kips)	Ultimate Stress (ksi)	Modulus of Elasticity (ksi)
I6-1	43.040	97.818	5,789.453
I6-2	42.700	97.045	6,247.710
I6-3	41.250	93.750	5,947.717
I6-4	42.700	97.045	6,269.634
I6-5	41.720	94.818	6,377.049
Average	42.280	96.091	6,126.313
Std.Dev.	0.759		246.738
Coef./Var.	0.018		0.040

Table 2A Results Of Tests of Separate Batch #1 of #6 Vinylester Matrix GFRP Bars

Table 2B Results of Tests of Separate Batch #2 of #6 Vinylester Matrix GFRP Bars

Specimen Number	Ultimate Force (kips)	Ultimate Stress (ksi)	Modulus of Elasticity (ksi)
I6-6	43.530	98.932	6,070.416
I6-7	39.710	90.250	5,189.904
I6-8	44.400	100.909	6,084.878
I6-9	40.460	91.955	5,774.652
I6-10	42.170	95.841	5,796.640
I6-11	42.570	96.750	5,248.463
Average	42.140	95.773	5,694.159
Std.Dev.	1.786		390.930
Coef./Var.	0.042		0.069

Specimen Number	Ultimate Force (kN)	Ultimate Stress (MPa)	Modulus of Elasticity (MPa)
I6-1	191.451	674.431	39,916.87
I6-2	189.939	669.102	43,076.44
I6-3	183.489	646.383	41,008.06
I6-4	189.939	669.102	43,227.60
I6-5	185.580	653.747	43,968.20
Average	188.071	662.529	42,239.44
Std.Dev.	3.376		1,701.20
Coef./Var.	0.018		0.040

Table 2Am Results Of Tests of Separate Batch #1 of #19 Vinylester Matrix GFRP Bars

A

Table 2Bm Results of Tests of Separate Batch #2 of #19 Vinylester Matrix GFRP Bars

Specimen Number	Ultimate Force (kN)	Ultimate Stress (MPa)	Modulus of Elasticity (MPa)
I6-6	193.631	682.112	41,854.04
I6-7	176.639	622.252	35,783.13
I6-8	197.501	695.743	41,953.76
I6-9	179.975	634.007	39,814.82
I6-10	187.581	660.800	39,966.42
I6-11	189.361	667.068	36,186.88
Average	187.448	660.332	39,259.84
Std.Dev.	7.945		2,695.37
Coef./Var.	0.042		0.069

Specimen Number	Rebar Size Number (steel)	Ultimate Force (kips)	Ultimate Stress (ksi)	Modulus of Elasticity (ksi)
P4-A	4	18.560	92.800	4,915.425
P4-B	4	18.650	93.250	5,321.293
P4-C	4	16.720	83.600	5,100.325
P4-D	4	16.320	81.600	5,122.138
P4-E	4	17.285	86.425	5,157.804
Average	4	17.507	87.535	5,123.397
Std.Dev.		1.060	5.299	145.028
Coef./Var.			0.061	0.028
P5-A	5	20.800	67.097	4,672.288
Р5-В	5	21.240	68.516	4,139.635
Р5-С	5	22.850	73.710	N/A**
P5-D	5	21.580	69.613	4,259.746
Р5-Е	5	21.045	67.887	6,327.288***
Average	5	21.503	69.365	4,849.789
Std.Dev.		0.805	2.597	1,011.101
Coef/Var.			0.037	0.208
P6-A	6	36.230	82.341	4,875.905
P6-B	6	38.720	88.000	4,869.897
P6-C	6	42.970	97.659	6,108.980***
P6-D	6	36.230	82.341	4,887.880
P6-E	6	25.293*	63.233*	4,815.064
Average	6	38.538	87.585	5,111.545
Std.Dev.		3.180	7.226	558.284
Coef./Var.			0.083	0.109

Table 3 Tension Test Results of Polyester Matrix GFRP Bars

* not used in calculating averages, etc.
** not available; strain was not recorded
*** this excessive value increased the coefficient of variation

Specimen Number	Metric Rebar Size (steel)	Ultimate Force (kN)	Ultimate Stress (MPa)	Modulus of Elasticity (MPa)
P4-A	13	82.559	639.830	33,890.66
P4-B	13	82.959	642.940	36,689.02
P4-C	13	74.374	576.402	35,165.50
P4-D	13	72.595	562.612	35,315.90
P4-E	13	76.887	595.879	35,561.81
Average	13	77.875	603.533	35,324.58
Std.Dev.		4.715	36.535	999.93
Coef./Var.			0.061	0.028
P5-A	16	92.523	462.618	32,214.29
Р5-В	16	94.480	472.401	28,541.78
P5-C	16	101.642	508.213	N/A**
P5-D	16	95.993	479.965	29,369.91
P5-E	16	93.613	468.064	43,625.11***
Average	16	95.650	478.255	33,438.12
Std.Dev.		3.581	17.906	6,971.30
Coef/Var.			0.037	0.208
P6-A	19	161.159	567.721	33,618.18
P6-B	19	172.235	606.739	33,576.76
P6-C	19	191.140	673.335	42,119.93***
P6-D	19	161.159	567.721	33,700.74
P6-E	19	112.509*	435.976*	33,198.70
Average	19	171.426	603.877	35,242.86
Std.Dev.		14.145	49.822	3,849.23
Coef./Var.			0.083	0.109

Table 3m Tension Test Results of Polyester Matrix GFRP Bars

* not used in calculating averages, etc.
** not available; strain was not recorded
*** this excessive value increased the coefficient of variation

Table 4m Results Of Tests of #13 Polyester Matrix GFRP Bars Under Varying Loading Rates

Loading Rate (cm/min)	Specimen Number	Ultimate Force (kN)	Ultimate Stress (MPa)
	P4-7	72.977	565.577
0.127	P4-8	69.503	538.653
	P4-12	73.849	572.354
5	Average	72.110	558.855
	P4-A	82.159	636.731
0.178	P4-B	83.004	643.281
105 (6)483.03 (0666	P4-C	74.374	576.402
	Average	79.846	618.804
	P4-16	83.622	648.073
0.254	P4-20	72.977	565.577
1993 - CONSTRUCT (1994) 1997 - Construct (1994) 1997 - Construct (1994)	P4-21	79.494	616.081
	Average	78.698	624.493
	P4-11	81.015	627.811
0.508	P4-13	81.665	632.904
	P4-15	79.058	612.703
	Average	80.580	624.493
	P4-4	74.063	573.989
0.762	P4-9	81.451	631.249
	P4-10	77.355	599.499
	Average	77.621	601.581
	P4-5	87.314	676.686
1.270	P4-6	79.712	617.770
	P4-14	78.627	609.359
	Average	81.883	634.607

0.55 0.5 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 Rate of Loading Head Speed, ins/min ---- Average Point Actual Data 0.05 15+ 0 16--01 18-17 2 0 2 0

Failure Load, kips

Figure 1: Effect of Loading Rate on Tensile Failure Load

Specimen Number	Rebar Size Number (steel)	Ultimate Force (kips)	Ultimate Stress (ksi)	Modulus of Elasticity (ksi)
C4-1	4	ng	ng	ng
C4-2	4	24.658	123.290	11,598.28
C4-3	4	26.318	131.590	11,659.54
C4-4	4	27.637	138.185	11,549.35
C4-5	4	22.949	114.745	10,999.81
C4-6	4	21.000	105.000	10,927.50
Average	4	24.512	122.562	11,346.90
Std.Dev.			13.188	352.95
Coef./Var.			0.108	0.031
C5-1	5	ng	ng	ng
C5-2	5	54.883	177.042	15,290.66
C5-3	5	32.861	106.003	10,586.46
C5-4	5	30.957	99.861	10,466.43
C5-5	5	37.012	119.394	12,537.14
C5-6	5	39.111	126.165	12,035.27
Average	5	38.965	125.693	12,183.19
Std.Dev.			30.543	1,955.78
Coef/Var.			0.243	0.161
C6-1	6	51.221	116.411	10,448.79
C6-2	6	46.973	106.757	10,517.76
C6-3	6	46.631	105.980	10,773.96
C6-4	6	57.520	130.727	12,652.99
C6-5	6	39.160	89.000	8,177.41
C6-6	6	41.406	94.105	11,890.88
Average	6	47.152	107.163	10,743.63
Std.Dev.			15.118	1,528.80
Coef./Var.			0.141	0.142

Table 5 Tension Test Results for Carbon Fiber Epoxy Matrix Bars

X

Specimen Number	Metric Rebar Size (steel)	Ultimate Force (kN)	Ultimate Stress (MPa)	Modulus of Elasticity (MPa)
C4-1	13	ng	ng	ng
C4-2	13	109.684	850.055	79,967.32
C4-3	13	117.068	907.281	80,389.70
C4-4	13	122.935	952.752	79,629.96
C4-5	13	102.082	791.139	75,841.02
C4-6	13	93.413	723.949	75,342.46
Average	13	109.035	845.035	78,234.12
Std.Dev.			90.928	2,433.50
Coef./Var.			0.108	0.031
C5-1	16	ng	ng	ng
C5-2	16	244.132	1,220.662	105,425.39
C5-3	16	146.173	730.865	72,991.07
C5-4	16	137.704	688.517	72,163.49
C5-5	16	164.638	823.193	86,440.53
C5-6	16	173.974	869.877	82,980.26
Average	16	173.325	866.623	84,000.13
Std.Dev.			210.587	13,484.63
Coef/Var.			0.243	0.161
C6-1	19	227.842	802.626	72,041.87
C6-2	19	208.946	736.064	72,517.40
C6-3	19	207.425	730.706	74,283.84
C6-4	19	255.862	901.331	87,239.29
C6-5	19	174.192	613.633	56,381.25
C6-6	19	184.183	648.831	81,984.73
Average	19	209.298	738.863	74,074.72
Std.Dev.			104.235	10,540.70
Coef./Var.			0.141	0.142

Table 5m Tension Test Results for Carbon Fiber Epoxy Matrix Bars

Glass/Vinylester vs. Carbon/Epoxy Relative Strength and Stiffness

Figure 2 Comparison of Relative Strength and Stiffness of Carbon and Glass Fiber Rebars

3.1.2 Fatigue Testing Results

The results of the fatigue testing of both the glass and carbon FRP bars is given in tabular form below, and the results are combined in graphic presentation. The interpretation and application of the results follow in Section 4.

Glass Fiber and Carbon Fiber Reinforced Bars

Table 6 lists the results of this testing procedure for the glass reinforced rebars. Table 7 shows the results for the carbon reinforced rebars. Figures 3 and 4 show those results in two semi-log plots. In Figure 3 the vertical axis is the maximum stress level of the repeated load in ksi. In Figure 4 the vertical axis is the percent of the ultimate tensile load for each of the individual bar sizes. In both figures the horizontal axis is a logrithmic scale of the number of repetitions of load to failure. In both figures different symbols are used to indicate the results for different bar sizes.

Both plots describe a fatigue behavior consistent with that of a brittle material. They show an essentially linear decrease (on the semi-log plot) of strength versus number of repetitions of load. In most materials subject to fatigue strength reduction this plot is known as an S-N diagram (S=stress, N=number). Such plots will usually indicate also a lower limit of fatigue strength reduction associated with a stress level below which the repetitions of load can theoretically continue to an infinite number without causing a failure to the material. This level of stress is called an "endurance limit." The number of tests available for the GFRP and CFRP bars was insufficient to indicate a definite endurance limit. Also, the one variable examined, % of ultimate load, is insufficient to evaluate the true fatigue strength characteristics of these bars. Further, other frequencies of load repetition should be examined beyond 1Hz.

Specimen Number	Maximum Force Applied (kips)	Equivalent Steel Bar Area (sq.in.)	Maximum Stress Applied (ksi)	Percent of Average Ultimate Load	Number of Cycles Before Failure
G4D	10	0.20	50.000	71.429	617
G4NB	10	0.20	50.000	71.429	219
G4E	8	0.20	40.000	57.143	324
G4F	8	0.20	40.000	57.143	1,237
G4MB	8	0.20	40.000	57.143	606
G4G	6	0.20	30.000	42.857	4,589
G4NA	6	0.20	30.000	42.857	39,650
G4H	4	0.20	20.000	28.571	104,655
G4L	4	0.20	20.000	28.571	18,470
G4MA	4	0.20	20.000	28.571	39,848
G5K	14	0.31	45.161	64.516	292
G5M	14	0.31	45.161	64.516	362
G5I	11	0.31	35.484	50.691	835
G5J	11	0.31	35.484	50.691	953
G5G	8	0.31	25.806	36.866	4,819
G5H	8	0.31	25.806	36.866	6,799
G5L	5	0.31	16.129	23.041	190,150
G5N	5	0.31	16.129	23.041	136,268
G50	3	0.31	9.677	13.825	604,915*
G5P	3	0.31	9.677	13.825	691,175*
G6H	18	0.44	40.909	42.494	4,118
G6P	18	0.44	40.909	42.494	3,318
G6I	13	0.44	29.545	30.690	18,481
G60	13	0.44	29.545	30.690	13,546
G6N	11	0.44	25.000	25.969	35,417
G6J	9	0.44	20.455	21.247	82,288
G6M	9	0.44	20.455	21.247	101,047
G6K	7	0.44	15.909	16.525	280,649
G6L	7	0.44	15.909	16.525	478,093

TABLE 6 Results of Fatigue Loading of Glass Fiber Rebars @ 1Hz

* test stopped before failure after more than 500,000 cycles

Specimen Number	Maximum Force Applied (kN)	Equivalent Steel Bar Area (sq.mm)	Maximum Stress Applied (MPa)	Percent of Average Ultimate Load	Number of Cycles Before Failure
G4D	44.5	129	344.74	71.429	617
G4NB	44.5	129	344.74	71.429	219
G4E	35.6	129	275.79	57.143	324
G4F	35.6	129	275.79	57.143	1,237
G4MB	35.6	129	275.79	57.143	606
G4G	26.7	129	275.79	42.857	4,589
G4NA	26.7	129	206.84	42.857	39,650
G4H	17.8	129	139.90	28.571	104,655
G4L	17.8	129	139.90	28.571	18,470
G4MA	17.8	129	139.90	28.571	39,848
G5K	62.3	199	311.37	64.516	292
G5M	62.3	199	311.37	64.516	362
G5I	48.9	199	311.37	50.691	835
G5J	48.9	199	244.65	50.691	953
G5G	35.6	199	244.65	36.866	4,819
G5H	35.6	199	177.93	36.866	6,799
G5L	22.2	199	111.21	23.041	190,150
G5N	22.2	199	111.21	23.041	136,268
G50	13.3	199	66.72	13.825	604,915*
G5P	13.3	199	66.72	13.825	691,175*
G6H	80.1	284	282.06	42.494	4,118
G6P	80.1	284	282.06	42.494	3,318
G6I	57.8	284	203.71	30.690	18,481
G60	57.8	284	203.71	30.690	13,546
G6N	48.9	284	172.37	25.969	35,417
G6J	40.0	284	141.03	21.247	82,288
G6M	40.0	284	141.03	21.247	101,047
G6K	31.1	284	109.69	16.525	280,649
G6L	31.1	284	109.69	16.525	478,093

TABLE 6m Results of Fatigue Loading of Glass Fiber Rebars @ 1Hz

Ì

* test stopped before failure after more than 500,000 cycles

Specimen Number	Maximum Force Applied (kips)	Equivalent Steel Bar Area (sq.in.)	Maximum Stress Applied (ksi)	Percent of Average Ultimate Load	Number of Cycles Before Failure
C4-7	22	0.20	110.00	89.752	286
C4-8	22	0.20	110.00	89.752	616
C4-9	19	0.20	95.00	77.513	36,456
C4-10	19	0.20	95.00	77.513	8,745
C4-11	17	0.20	85.00	69.354	171,178
C4-12	17	0.20	85.00	69.354	520,222*
C4-13	15	0.20	75.00	61.195	515,116*
C4-15	12	0.20	60.00	48.956	520,438*
C5-7b	32	0.31	103.23	91.467	1,115
C5-8	32	0.31	103.23	91.467	820
C5-9	29	0.31	93.55	82.892	1,919
C5-13	29	0.31	93.55	82.892	5
C5-10	25	0.31	80.65	71.459	87,596
C5-11	25	0.31	80.65	71.459	884
C5-14	25	0.31	80.65	71.459	752
C5-12	21	0.31	67.74	60.025	87,759
C5-15	21	0.31	67.74	60.025	2,396
C5-7a	18	0.31	58.06	51.451	514,176*
C6-7	43	0.44	97.73	91.194	120
C6-8	43	0.44	97.73	91.194	1,062
C6-9	38	0.44	86.36	80.590	76,491
C6-10	38	0.44	86.36	80.590	129,600
C6-11	33	0.44	75.00	69.986	333,031
C6-12	33	0.44	75.00	69.986	197,074
C6-13	28	0.44	63.64	59.382	479,774
C6-14	28	0.44	63.64	59.382	460,784
C6-15	24	0.44	54.55	50.899	518,382*

 TABLE 7 Results of Fatigue Loading of Carbon Fiber Rebars @ 1Hz

* test stopped before failure after more than 500,000 cycles

1

Specimen Number	Maximum Force Applied (kN)	Equivalent Steel Bar Area (sq.mm)	Maximum Stress Applied (MPa)	Percent of Average Ultimate Load	Number of Cycles Before Failure
C4-7	97.9	129	758.42	89.752	286
C4-8	97.9	129	758.42	89.752	616
C4-9	84.5	129	655.00	77.513	36,456
C4-10	84.5	129	655.00	77.513	8,745
C4-11	75.6	129	586.05	69.354	171,178
C4-12	75.6	129	586.05	69.354	520,222*
C4-13	66.7	129	517.11	61.195	515,116*
C4-15	53.4	129	413.69	48.956	520,438*
C5-7b	142.3	199	711.79	91.467	1,115
C5-8	142.3	199	711.79	91.467	820
C5-9	129.0	199	645.00	82.892	1,919
C5-13	129.0	199	645.00	82.892	5
C5-10	111.2	199	556.06	71.459	87,596
C5-11	111.2	199	559.06	71.459	884
C5-14	111.2	199	559.06	71.459	752
C5-12	93.4	199	467.05	60.025	87,759
C5-15	93.4	199	467.05	60.025	2,396
C5-7a	80.1	199	400.31	51.451	514,176*
C6-7	191.3	284	673.82	91.194	120
C6-8	191.3	284	673.82	91.194	1,062
C6-9	169.0	284	595.43	80.590	76,491
C6-10	169.0	284	595.43	80.590	129,600
C6-11	146.8	284	517.11	69.986	333,031
C6-12	146.8	284	517.11	69.986	197,074
C6-13	124.6	284	438.78	59.382	479,774
C6-14	124.6	284	438.78	59.382	460,784
C6-15	106.8	284	376.11	50.899	518,382*

TABLE 7m Results of Fatigue Loading of Carbon Fiber Rebars @ 1Hz

* test stopped before failure after more than 500,000 cycles

0

Í

FATIGUE TEST RESULTS @ 1Hz Glass/Vinylester & Carbon/Epoxy Bars

Maximum Stress Level From Zero, ksi

Figure 3 Stress Level Versus Number of Cycles To Failure

FATIGUE TEST RESULTS @ 1Hz Glass/Vinylester & Carbon/Epoxy Bars

Figure 4 Percent of Ultimate Load Vs. Number of Cycles to Failure

Maximum % of Ultimate Load from Zero, %

3.2 Testing for Bond Strength

Tables 8A and 8B list the results of the bond tests giving specimen number, bar material, bar size, embedment length, concrete strength, force at failure, average bond stress, and the resulting \mathbf{k} variable. For each size bar, the average, standard deviation, and coefficient of variation for the \mathbf{k} value are given. Also given is the value of the \mathbf{k} variable divided by 35. The value of 35 for a \mathbf{k} variable presently underlies the calculation of basic development lengths in the ACI Code for steel reinforcement. The value of that ratio indicates how much longer the development length of the GFRP bar would be than that for a steel bar of the same size.

The **k** variable is defined by the relationship, $l_d = A_b f_b / k \sqrt{f'_c}$...

where l_d is the length of embedment in inches necessary to develop the force, $A_b f_b$,

 A_b is the cross-sectional area of the bar in inches,

 f_b is the stress in the bar in psi,

 f'_{c} is the twenty-eight day strength of the concrete in psi, and

k is the normalizing constant to be evaluated.

From the test results, k is evaluated by dividing the force at slip failure by the product of the length of embedment and the square root of the 28-day concrete strength, f'_c . That is, $k = F / l_d \sqrt{f'_c}$. The ratios of the average values of k, each for a given bar size, divided by 35 indicate increasingly better development length values for increasing bar size. These results are consistent with earlier bond strength tests done at the University of Arkansas of GFRP bars from a different Arkansas manufacturer [Pleimann, 1991].

The average results suggest that one would need a 75%, 31%, and 7% increase in the development lengths of the #'s 4, 5, and 6 (13, 16, and 19 metric) GFRP rebars respectively.

Specimen Number	Bar Type	Bar Size	Embedment Length (ins)	Average Ultimate Concrete Strength (psi)	Force at Slip Failure (lbs)	Average Bond Stress (psi)	Calculated k Factor
FD4E6T1	FRP	4	6	3050	7100	753.3	21.43
FD4E6T4	FRP	4	6	3050	8400	891.3	25.35
FD4E6T5	FRP	4	6	3050	4500	477.4	13.58*
FD4E8T6	FRP	4	8	3050	9400	748.0	21.28
FD4E8T7	FRP	4	8	3050	8700	692.3	19.69
FD4E8T2	FRP	4	8	3050	7800	620.7	17.65
FD4E10T9	FRP	4	10	3050	9100	579.3	16.48
FD4E10T10	FRP	4	10	3050	N/A	N/A	N/A
FD4E10T11	FRP	4	10	3050	9550	636.6	17.29
SD4E8T8	STEEL	4	8	3050	10100	803.7	22.86
SD4E8T12	STEEL	4	8	3050	14200	1130.0	32.14
SD4E8T3	STEEL	4	8	3050	13900	1106.1	31.46
STATIS	ГІСАL VA Calcu	LUES] lated k	FOR #4 FRP B Factor	ARS	Avera Standard Coefficien 35	ge, X Deviation t/Variation /X	19.88 3.10 0.156 1.751
FD5E75T13	FRP	5	7.5	3050	11000	747.0	26.56
FD5E75T14	FRP	5	7.5	3050	12300	835.2	29.70
FD5E75T15	FRP	5	7.5	3050	8900	604.4	21.49
FD5E10T16	FRP	5	10	3050	16700	850.5	30.24
FD5E10T17	FRP	5	10	3050	17900	911.6	32.41
FD5E10T18	FRP	5	10	3050	11300	575.5	20.46
SD5E10T19	STEEL	5	10	3050	22100	1125.5	40.02
SD5E10T20	STEEL	5	10	3050	24300	1237.6	44.00
SD5E10T21	STEEL	5	10	3050	16250	827.6	29.42

TABLE 8A Bond Strength Results in 3050 psi Concrete of GFRP Rebars

* not used in calculating average

Specimen Number	Bar Type	Metric Bar Size	Embedment Length (cm)	Average Ultimate Concrete Strength (MPa)	Force at Slip Failure (kN)	Average Bond Stress (MPa)	Calculated k Factor
FD4E6T1	FRP	13	15.24	21.029	31.582	5.193	21.43
FD4E6T4	FRP	13	15.24	21.029	37.365	6.145	25.35
FD4E6T5	FRP	13	15.24	21.029	20.017	3.292	13.58*
FD4E8T6	FRP	13	20.32	21.029	41.813	5.157	21.28
FD4E8T7	FRP	13	20.32	21.029	38.700	4.773	19.69
FD4E8T2	FRP	13	20.32	21.029	34.696	4.280	17.65
FD4E10T9	FRP	13	25.40	21.029	40.479	3.994	16.48
FD4E10T10	FRP	13	25.40	21.029	N/A	N/A	N/A
FD4E10T11	FRP	13	25.40	21.029	42.481	4.389	17.29
SD4E8T8	STEEL	13	20.32	21.029	44.927	5.541	22.86
SD4E8T12	STEEL	13	20.32	21.029	63.165	7.791	32.14
SD4E8T3	STEEL	13	20.32	21.029	61.830	7.626	31.46
STATI	ALUES FO culated k Fa	IRS	Avera Standard Coefficien 35	ge, X Deviation t/Variation /X	19.88 3.10 0.156 1.751		
FD5E75T13	FRP	16	19.05	21.029	48.930	5.150	26.56
FD5E75T14	FRP	16	19.05	21.029	54.713	5.759	29.70
FD5E75T15	FRP	16	19.05	21.029	39.589	4.167	21.49
FD5E10T16	FRP	16	25.40	21.029	74.285	5.864	30.24
FD5E10T17	FRP	16	25.40	21.029	79.623	6.285	32.41
FD5E10T18	FRP	16	25.40	21.029	50.265	3.968	20.46
SD5E10T19	STEEL	16	25.40	21.029	98.306	7.760	40.02
SD5E10T20	STEEL	16	25.40	21.029	108.092	8.533	44.00
SD5E10T21	STEEL	16	25.40	21.029	72.284	5.706	29.42

TABLE 8Am Bond Strength Results in 21.029 MPa Concrete of GFRP Rebars

* not used in calculating average

Specimen Number	Bar Type	Bar Size	Embedment Length (ins)	Average Ultimate Concrete Strength (psi)	Force at Slip Failure (lbs)	Average Bond Stress (psi)	Calculated k Factor
FD5E10T34	FRP	5	10	2500	13250	674.8	26.50
FD5E10T35	FRP	5	10	2500	11700	595.9	23.40
FD5E10T36	FRP	5	10	2500	13500	687.5	27.00
FD5E12T31	FRP	5	12	2500	16300	691.8	27.17
FD5E12T32	FRP	5	12	2500	19400	823.4	32.33
FD5E12T33	FRP	5	12	2500	14500	615.4	24.17
SD5E10T37	STEEL	5	10	2500	N/A	N/A	N/A
SD5E10T38	STEEL	5	10	2500	20200	1028.8	40.40
SD5E10T39	STEEL	5	10	2500	20000	1018.6	40.00
STATIS	TICAL VA Calcu	LUES I lated k	FOR #5 FRP B Factor	ARS	Average, X Standard Deviation Coefficient/Variation 35/X		26.79 3.93 0.147 1.307
FD6E9T22	FRP	6	9	2500	N/A	N/A	N/A
FD6E9T23	FRP	6	9	2500	N/A	N/A	N/A
FD6E9T24	FRP	6	9	2500	13900	655.5	30.89
FD6E12T28	FRP	6	12	2500	19000	672.0	31.67
FD6E12T29	FRP	6	12	2500	23700	838.2	39.50
FD6E12T30	FRP	6	12	2500	N/A	N/A	N/A
FD6E13T25	FRP	6	13	2500	18100	590.9	27.85
FD6E12T26	FRP	6	13	2500	N/A	N/A	N/A
FD6E13T27	FRP	6	13	2500	22000	718.2	33.85
SD6E12T40	STEEL	6	12	2500	N/A	N/A	N/A
SD6E12T41	STEEL	6	12	2500	N/A	N/A	N/A
SD6E12T42	STEEL	6	12	2500	N/A	N/A	N/A
STATIS	TICAL VA Calcu	LUES I lated k	Avera Standard Coefficient 35	ge, X Deviation t/Variation /X	32.75 4.34 0.133 1.069		

TABLE 8B Bond Strength Results in 2500 psi Concrete of GFRP Rebars

Specimen Number	Bar Type	Metric Bar Size	Embedment Length (cm)	Average Ultimate Concrete Strength (MPa)	Force at Slip Failure (kN)	Average Bond Stress (MPa)	Calculated k Factor
FD5E10T34	FRP	16	25.4	17.237	58.939	4.653	26.50
FD5E10T35	FRP	16	25.4	17.237	52.044	4.109	23.40
FD5E10T36	FRP	16	25.4	17.237	60.051	4.740	27.00
FD5E12T31	FRP	16	30.5	17.237	72.506	4.770	27.17
FD5E12T32	FRP	16	30.5	17.237	86.295	5.677	32.33
FD5E12T33	FRP	16	30.5	17.237	64.499	4.243	24.17
SD5E10T37	STEEL	16	25.4	17.237	N/A	N/A	N/A
SD5E10T38	STEEL	16	25.4	17.237	89.854	7.093	40.40
SD5E10T39	STEEL	16	25.4	17.237	88.964	7.023	40.00
STATI	STICAL V Calc	ALUES FC culated k F	DR #16 FRP BA actor	ARS	Average, X Standard Deviation Coefficient/Variation 35/X		26.79 3.93 0.147 1.307
FD6E9T22	FRP	19	22.9	17.237	N/A	N/A	N/A
FD6E9T23	FRP	19	22.9	17.237	N/A	N/A	N/A
FD6E9T24	FRP	19	22.9	17.237	61.830	4.920	30.89
FD6E12T28	FRP	19	30.5	17.237	84.516	4.633	31.67
FD6E12T29	FRP	19	30.5	17.237	105.423	5.779	39.50
FD6E12T30	FRP	19	30.5	17.237	N/A	N/A	N/A
FD6E13T25	FRP	19	33.0	17.237	80.513	4.074	27.85
FD6E12T26	FRP	19	33.0	17.237	N/A	N/A	N/A
FD6E13T27	FRP	19	33.0	17.237	97.861	4.952	33.85
SD6E12T40	STEEL	19	30.5	17.237	N/A	N/A	N/A
SD6E12T41	STEEL	19	30.5	17.237	N/A	N/A	N/A
SD6E12T42	STEEL	19	30.5	17.237	N/A	N/A	N/A
STATI	ALUES For culated k F	Aver Standard Coefficier 35	age, X Deviation nt/Variation 5/X	32.75 4.34 0.133 1.069			

TABLE 8Bm Bond Strength Results in 17.237 MPa Concrete of GFRP Rebars

4. CONCLUSIONS AND RECOMMENDATIONS

Despite the limited number of tests performed, and the scatter of data in the CFRP results because of the inconsistency of the hand production procedure, valuable information can be extrapolated from the results. Following is an interpretation of the test data, recommendations for the application of GFRP rebars and CFRP rebars in transportion structures, and recommendations regarding further research that should be done in this area of interest.

4.1 Interpretation of Test Results

4.1.1 Tension Strength and Modulus of Elasticity Tests

The data received from the reported tests may be summarized in the following manner. The GFRP bars were consistent in their strength, averaging 70 ksi (482.6 MPa) ultimate stress for the #4 (#13m) and #5 (#16m) bars, and 95 ksi (655.0 MPa) for the #6 (#19m) bars. The #4 (#13m), #5 (#16m), and #6 (#19m) bars showed average moduli of elasticity of 4.9 (33.8), 5.3 (36.5), and 6.0 (41.4) million psi (GPa) respectively.

The major difference in the strength results for GFRP bars between the two smaller bar sizes and the larger one indicates the effect of two factors that should be discussed at this point. First is the relationship between the "steel" rebar sizes and the FRP rebar sizes. Manufacturers of the FRP bars adopt similar size designations so that the users of their product will be comfortable with numbers they already know from design with steel rebar sizes. However, often the FRP bars are manufactured by die sizes and wrapping processes that instead produce differences between the "steel" and FRP rebar cross-sectional areas for the same "size."

Examination of Figure 2 shows a tight concentration of results for the same GFRP bar size, especially the two larger sizes. Theoretically, the stress capacity of a unit area of uniaxial fibers with the same percentage of fiber and matrix should be the same. But the cross-sectional areas that are divided into the ultimate force may not be truly representative of the actual effective cross-sectional area.

The other factor that affects the tensile stress capacity results is the longitudinal configuration of the fibers. In the attempt to put a deformation in the outer surface of the bars for bond strength, normally an additional fiber roving strand or two are wrapped around the bar before it hardens. This creates a helical depression around the rebar surface and places the outer fibers in a non-uniaxial configuration. It is these outer fibers that are initially stressed as the surface bond initiates the tendency toward a uniform tension stress across the rebar cross section. These outer non-uniaxial fibers cannot resist with the same capacity as the inner uniaxially oriented fibers. The outer deformation, composed of non-uniaxial fibers, may well affect a constant absolute length of the outer portion of the radius of the bar cross section. That means that the proportion of the inner core of uniaxial fibers may be a larger percentage of the total bar cross-sectional "area" in the larger sized bars than in the smaller ones. This would make the larger sized bars indicate a stronger stress capacity than the smaller sized bars, which is consistent with our results.

An Iowa State University researcher [Porter, 1994] told the author that he had developed a relationship between the cosine of the steepest angle of the fibers relative to the longitudinal axis and the stress capacity reduction of the bar. The author was told [Gauchel, 1994] that the ASTM committee currently discussing the proper cross section to use in the evaluation of the stress capacity was suggesting the use of the net uniaxial core area within the deformations. This would seem to put a premium on optimizing the uniaxial cross sectional area. Thus an "ideal" FRP rebar would be one that would emerge with a smooth surface from the pultrusion die and then have a deformed surface added to it afterward. The development of such a bar would require expertise in polymer science and the possibility of adhesion between the previously pultruded smooth surface and the added deformation. This is a very important area of future research.

In any case, these factors make for an inescapably difficult evaluation of the tensile strength of FRP rebars that are "deformed" by means of a helical wrap before the main portion of the bar is fully polymerized. In the meantime, it might well be better for designers to work with the average **force** capacity of a given FRP bar "size" rather than a **stress** capacity. A minimum ultimate force capacity of the bars would need to be guaranteed by the manufacturer rather than a stress capacity.

The results for the CFRP bars were more scattered because of the hand manufacture. The carbon bars showed an average ultimate tensile strength of 122.5 (844.6), 125.7 (866.7), and 107.2 (739.1) ksi (GPa) for the #4 (#13m), #5 (#16m), and #6 (#19m) bars respectively. The #4 (#13m), #5 (#16m), and #6 (#19m) bars showed average modulii of elasticity of 11.3 (77.9), 12.2 (84.1), and 10.9 (75.2) million psi (GPa) respectively. The carbon fiber bars are obviously superior to the glass fiber bars in both strength and stiffness. With carefully controlled pultrusion production this superiority could well be increased.

4.1.2 Bond Pull-Out Tests

The bond pull-out tests indicated that the coefficient, **k**, varied with size of bar, having an average value of 19.88, 26.79, and 32.75 for #4 (#13m), #5 (#16m), and #6 (#19) glass reinforced (GFRP) rebars respectively. This indicates the need for development lengths some 75%, 31%, and 7% greater than the current ACI Code formulation for individual steel rebars

of the same respective "size." This tendency for increased bond capacity with increasing bar size is consistent with earlier tests done at the University of Arkansas on GFRP bars from a different manufacturer [Pleimann, 1991]. There is no reason why carbon fiber reinforced (CFRP) bars in a compatible vinylester matrix should not give similar bond strength results since the bond strength is primarily a function of the hardness of the matrix material for FRP rebars.

4.1.3 Fatigue Strength Tests

The results of the fatigue tests for both the GFRP and CFRP bars were summarized in Figures 3 and 4. The typical behavior of a brittle material as plotted on such an S-N diagram was apparent for both materials, except that again the results of the carbon fiber bars was much more scattered. By plotting tensile stress applied, or percent of ultimate load capacity versus number of cycles of loading to failure on a log scale, one obtained an essentially linear improvement of number of cycles of load possible as the applied stress level was reduced. Unfortunately the results are not conclusive as to the endurance limit of FRP rebars made of either material. The tests were stopped before the bar failed in fatigue if the number of cycles had exceeded 500,000. The symbols for such tests are included in Figures 3 and 4 but enclosed in a rectangle with a note "test halted before failure." A few of the symbols enclosed in the rectangle represent failure very near, but less than 500,000 cycles. The difference can be identified by comparing the Figures 3 and 4 with the data in Tables 6 and 7 where the number of cycles for the halted tests has an asterisk added.

If the tests could have been continued beyond 500,000 cycles the endurance limit of the material might have been established. This would have been particularly helpful because the endurance limit could then be used as an allowable stress in a Working Stress Design approach to the use of the rebars under any number of repeated loads. One of the few papers available

that examines the fatigue characteristics of GFRP bars [Chaallal and Benmokrane, 1993] is reporting on a bar with the bond resistance gained by the use of a double-helix outer wrap on the bars. Each wrap is applied in an opposite rotational direction. Figure 5 from their paper is reproduced on the next page. It contains a limited amount of GFRP data plotted on a graph of steel fatigue data. Of perhaps even more significance is that the average "endurance limit" of steel (S_r) is only 166 MPa (24.1 ksi). This is in the order of the allowable stress for a Grade 60 steel rebar if one is using Working Stress Design. The ACI Code [ACI, 1995] still uses 20 ksi (137.9 MPa) as the allowable stress for Grade 40 and Grade 50 rebars, but only 24 ksi (165.5 MPa) for Grade 60 rebars. Interestingly, the 1983 edition of the ACI Committee 350 Report, "Concrete Sanitary Engineering Structures," permitted an allowable stress of 30 ksi (206.8 MPa) for Grade 60 rebars. Obviously reinforced concrete water treatment and waste water treatment tanks are not subject to rapidly repeated load so the fatigue strength restriction was relaxed and the factor-of-safety was consistent was that for Grade 40 bars. In the most recent edition of the report, ACI 350R-89, the allowable has been reduced to 27 ksi (186.2 MPa) but because of crack control considerations.

A consideration of Figures 3 and 4 indicates that the endurance limit for the GFRP bars is less than or equal to 15 ksi (103.4 MPa), that of CFRP rebars is less than or equal to possibly as much as 60 ksi (413.7 MPa). Obviously much work must be done to establish the endurance limit of these bars, to identify all the factors that influence the endurance limit and to move in the direction of an optimum fiber configuration for such bars and the means to manufacture them. In the meantime, the stresses mentioned above could well function as allowable stresses for the respective materials in statically loaded structures until the final endurance limit is established.

Figure 5 Other GFRP Fatigue Data Compared With Steel (from Chaalial and Benmokrane)

4.1.4 General Conclusions

Glass fiber reinforced polymer rods will continue to be the FRP bar of choice as reinforcement for Portland cement concrete structures for some time. The primary reasons are cost and strength. Glass fiber is available for about \$0.70 to \$0.80 per pound. The ultimate stresses available are competitive with steel. The disadvantage of GFRP rods is primarily their low stiffness. Their modulus-of-elasticity is only about one-sixth to one-fifth that of steel. This low modulus-of-elasticity results in excessive deflection and cracking in reinforced concrete structures unless it is countered by using a low allowable stress and/or short fibers mixed in the concrete to increase its tension strength.

Carbon fiber gives promise of a stiffer bar. The modulus-of-elasticity of carbon fiber

fiber.

is in the order of 31 million psi, above that of steel. Even embedded in a resin its stiffness properties should be superior to that of GFRP. Even the handmade CFRP rebars of this study had a stiffness in the order of twice that of the pultruded GFRP bars. CFRP bars also possess excellent strength and fatigue resistance in comparison with the glass fiber bars. The current drawback to using carbon fiber is its high cost. That price, in recent years, has reduced from more than \$9/pound to about \$5/pound today. Moreover, research has been reported in the last several years at the Chemical Engineering Department of West Virginia University which could lower the price of carbon fiber significantly. Researchers in Morgantown were developing the use of a special solvent combination for taking carbon directly from coal. Other researchers at Auburn University are investigating other procedures for lowering the production costs of carbon fiber.

Given the future of carbon FRP it is important that it has been included in this project and that its study be continued. A recent unpublished masters report at the University of Arkansas [White, 1997] did a rough comparison of costs of a 50 ft. (15.24 m) long two-lane bridge deck reinforced with conventional Grade 60 rebars as well as GFRP and CFRP rebars. The superior stiffness and strength of the CFRP bars in comparison to the GFRP ones made the former competitive with the latter despite the higher costs. Also, if one assumed one replacement of the steel reinforced deck and no replacement of the FRP reinforced decks, the life-cycle cost of the FRP reinforced decks is already less than that of the conventional steel reinforced deck.

Another factor possibly influencing the use of FRP bars for reinforcement would be their behavior in actual beams. The bars tested in this program were in direct tension. One could observe a kind of "rotation" of the cross section as it deflected and stretched under repeated load. That kind of behavior probably added to the fatigue effect on the outer fibers beginning

a progressive failure. If the outer wrapping were double and the wraps oppositely directed they would provide a symmetry that could counter the rotational effect.

Also, the bars in this project were tested in "bare" tension. In a beam they would be "enclosed" by the surrounding concrete. The endurance limit for steel is not far above the allowable stress for Grade 60 rebars in Working Stress Design procedures, yet the fatigue behavior of steel reinforced concrete beams is seldom examined. The fatigue strength of the FRP bars in beams may give different results than in direct tension tests.

On the basis of the results obtained from the described tests of FRP bars the following summary conclusions are tenable:

- FRP rods of each typical bar size exhibit strengths that are consistent and usable for Portland cement concrete reinforcement when manufactured by a proven production method such as pultrusion.
- 2. The load-deformation behavior of the bars is essentially linear from zero load to failure. Therefore, any flexural ductility desired will be limited to that provided by the non-linear character of the Portland cement concrete stress-strain curve. Therefore, Working Stress Design procedures are probably better suited to flexural design using FRP reinforcement.
- 3. The use of a proper allowable strength for the FRP bars for Working Stress flexural design will require a decision on the part of the design engineer. For statically loaded flexural sections the allowable should be less than or equal to half the ultimate stress or force capacity of the bar.
- 4. Subjecting a partially polymerized FRP bar to a helical wrap is the most typical method of producing surface deformations on pultruded bars. This procedure causes a reduction of strength in those fibers that are no longer uniaxial, i.e., not parallel to the longitudinal axis of the bar. A better FRP reinforcement bar would be one that would have surface

deformations added to a smooth surfaced pultruded bar in which all the fibers are uniaxial.

- 5. Bond strength characteristics of the bars produced with the outer helical wrap are adequate for safe design. The percentage increase in necessary development length as compared to steel bars of the same "size" will reduce as the bar size increases.
- 6. The modulii of elasticity of FRP rebars produced with external deformations from helical wrap are significantly lower than the MOE value for steel bars. The MOE can be assumed to be about 6 million psi (41.4 GPa) for GFRP rebars, and about 11 million psi (75.8 GPa) for CFRP rebars.
- 7. FRP bars exhibit strength reduction under repeated load. The value of their endurance limits is as yet unknown. Under 500,000 repeated loads at 1 Hz GFRP rebars could be assumed to have a fatigue strength of about 15 ksi (103.4 MPa), and the CFRP rebars could be assumed to have a fatigue strength of about 60 ksi (413.7 MPa). Working Stress Design procedures for flexural sections could use the fatigue strength of the bars as a design allowable stress it it were known for a given number of load repetitions. If the endurance limit were known then that could become the allowable design stress for any number of repetitive loads.

4.2 **Recommendations for Applications**

On the basis of the limited tests performed in this project for FRP rebars, the following recommendations can be made:

1. FRP bars can be safely used as reinforcement in concrete structures not subject to repeated load. Flexural sections should be designed by Working Stress Design procedures using no more than half the static strength of the FRP bar as the allowable

stress or force. Proper attention in design must also be paid to the stiffness of the bars and the resulting cracking and deflection. These structures would include median barriers, railings, retaining walls, etc.

- 2. Manufacturers of the bars should meet specified minimum tensile force capacity and average modulus-of-elasticity, subject to compliance testing requirements as set by the Arkansas Highway and Transportation Department.
- 3. The use of FRP rebars as reinforcement in Portland cement concrete members subject to fatigue loads is still problematic. It is recommended that design of flexural members in this context also be done by Working Stress Design procedures using an allowable stress for the FRP rebar that is representative of the fatigue strength of the bar appropriate to the anticipated number of repeated loads in the design life of the member. Further research will be needed to establish the endurance limit for bars of each fiber type.

4.3 Recommendations for Further Research

Research should be continued in the area of FRP rebars using a variety of fibers including at least E-glass, carbon and high-stiffness aramid fibers such as KEVLAR-149. Future projects should include investigation of the following topics:

- 1. Tension capacity with investigation of the effect of the following factors:
 - a) Comparison of static strength capacities and stiffnesses among a selection of the major national suppliers, including all the suppliers within the state of Arkansas.
 - b) Investigation of the effect of a variety of factors on the strength of FRP bars of significant fiber types. The factors to be examined should include at the minimum:

- 1) Depth of deformation in the outer surface. Correlation between strength and the angle made by the deformation with the longitudinal axis of the bar should be sought.
- 2) Pitch, or length between deformation.
- 3) Strength of the uniaxial core of fibers.
- 4) Development of a mathematical model for predicting the final strength of bars with helical wrap outer deformations.
- c) Development of a method of producing a pultruded bar with uniaxial fibers onto which can be attached a deformation pattern that will provide adequate bond strength. This will involve persons competent in polymer science as well as structural researchers.
- 2. Investigation of fatigue strength reduction including examination of the following factors:
 - a) Frequency of loading. The use of 6 Hz and 24 Hz is recommended.
 - b) Ratio of lower tensile stress to maximum tensile stress, and tensile stress range.
 - c) Fiber configuration including depth of deformation, pitch of the wrap, use of opposing directions of rotation, use of deformation applied to a smooth bar.

Later research should included the following:

- 3. Flexural behavior in half-scale reinforced concrete beams to failure using the most promising configuration of each type of fiber.
- 4. Fatigue strength of half-scale reinforced concrete beams under two levels of load and a 6 Hz frequency of load, using the most promising configuration of each type of fiber.

LIST OF REFERENCES

- Black, K. N., Larson, R. M., Staunton, L. R., "Evaluation of Stainless Steel Pipes for Use as Dowel Bars," Public Roads, Vol. 52, No. 2, 1988
- Clear, K. C., "Effectiveness of Epoxy-Coated Reinforcing Steel," Concrete International, American Concrete Institute, Volume 14, No. 5, May 1992, pp. 58f.
- Chaallal, O. and Benmokrane, B., "Physical and mechanical performance of an innovative glassfiber-reinforced plastic rod for concrete and grouted anchorages," Canadian Journal of Civil Engineering, Vol. 20, No. 2, April 1993, p.254f.
- Crumpton, C. F., "Concrete A Faithful Servant," **TR News**, May-June 1985, #118, pp.3-7. See especially the scanning electron pho-tomicrographs of rust crystals in Figures 5A and 5B.
- Faza, S. S., and GangaRao, H. V. S., "Behavior of Fiber Reinforced Plastic Rebar Under Bending and Bond," Transportation Research Board 69th Annual Meeting, Paper No.890441, January, 1990
- Gauchel, James, private conversation, October, 1994. Mr. Gauchel is a researcher with the Owens-Corning Science-Technology Center in Granville, OH, and is secretary to the ASTM committee establishing Standard D2018.
- Pleimann, L. G., "Strength, MOE, and Bond of Deformed FRP Rods," Proceedings of the ASCE Specialty Conference, Advanced Composites Materials in Civil Engineering Structures, Las Vegas, NV, January 31 & February 1, 1991.
- Porter, Max, private conversation, October, 1994. Dr. Porter has performed significant research in recent years in the area of FRP uses in reinforced concrete structures.
- Roll, R. D., private conversations regarding numerous projects for magnetic resonance imaging device installations done by Reynolds-Schlatner-Cheter-Roll, Inc., Consulting Engineers of San Antonio, Texas, under the design direction of Richard D. Roll.
- White, Kevin T., "Comparison of FRP Reinforced Concrete Bridge Deck Design to Steel Reinforced Concrete Bridge Deck Design," unpublished Master of Science Report, Civil Engineering Department, University of Arkansas, May, 1997.

